

MULTIDIMENSIONAL ARRAYS

The arrays we have been looking at until now have been linear, or sequential, lists. One-
dimensional. A vector is a one-dimensional array. The word array usually (but not always)
refers to a two- or more dimensional array. It is a vector whose elements are vectors. Multi-
dimensional arrays are useful for organizing data which is dependent on two or more variables.

If X is a matrix of numbers, it is said to be 2-dimensional. A 2-dimensional array can be thought
of as a table of data items, with rows and columns. The 3rd element in the 2nd row is referred to
as X(2,3).

Example:
//multidimarray.cpp
//modified from Hubbard ex. 5.17, p. 141

#include <iostream>

int main(){
 int x[3][5];
 //read the 2-dimensional array
 cout << "Enter 15 integers, 5 per row:\n";
 for (int i=0; i<3; i++){
 cout << "Row " << i << ": ";
 for (int j=0; j<5; j++)
 cin >> x[i][j];
 }
 //print the 2-dimensional array
 cout << "\nYour data matrix contains the following:";
 for (int i=0; i<3; i++){
 cout << endl;
 for (int j=0; j<5; j++)
 cout << " " << x[i][j];
 }
 cout << "\n\nPress any key to close console window.";
 char c; cin >> c;
 return 0;
}

Output:
Enter 15 integers, 5 per row:
Row 0: 44 33 87 88 100
Row 1: 22 33 45 75 66
Row 2: 4 6 66 44 110

Your data matrix contains the following:
 44 33 87 88 100
 22 33 45 75 66
 4 6 66 44 110

Press any key to close console window.

PROF. FRIEDMAN 1

MULTIDIMENSIONAL ARRAYS

A 3-dimensional array would be declared with three dimensions, e.g.:
 int x [25][10][5];
and three for loops with three index variables (e.g. i, j, k) would be used for processing it. A 3-
dimensional array can be thought of as a collection of tables, like pages in a book.

NOTE: When a multidimentional array is an argument to a function, only the size of the first
dimension can be missing. The others must be specified in the parameter list, e.g.,

int sumMatrix (int x[][100], int rows, int cols);

Examples:
Two-level array – Rating Table – Insurance rates by age and job classification:

 Job Classification
Age Class 1 [0] Class 2 [1] Class 3 [2] Class 4 [3]

18-34 [0] 23.50 25.25 27.05 52.90
35-39 [1] 24.00 35.75 27.55 53.40
40-44 [2] 24.60 36.35 28.15 54.00
45-49 [3] 25.30 37.05 28.85 54.70
50-54 [4] 26.30 38.05 29.85 55.70
55-59 [5] 28.00 39.75 31.55 57.40

Three-level array – Rating Table – Insurance rates by age, sex, and job classification:

 Men [0] Women [1]
 Job Classification Job Classification

Age Class 1 [0] Class 2 [1] Class 1 [0] Class 2 [1]
18-34 [0] 23.50 25.25 27.05 52.90
35-39 [1] 24.00 35.75 27.55 53.40
40-44 [2] 24.60 36.35 28.15 54.00
45-49 [3] 25.30 37.05 28.85 54.70
50-54 [4] 26.30 38.05 29.85 55.70
55-59 [5] 28.00 39.75 31.55 57.40

PROF. FRIEDMAN 2

MULTIDIMENSIONAL ARRAYS

Sparse arrays

e.g.:

0 0 0 0 1 0 0 2 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0

The problem here is that there is a lot of wasted space. Consider, a 1000 by 1000 array, 1
million elements and, say, 1500 are nonzero. What is a more efficient way to represent this
data?

How about an array of triplets, or 3 vectors:
Row[i] Column[i] Value[i]

1 5 1
1 8 2
2 2 1
3 1 1
5 4 4
6 8 2
8 1 2
8 2 1

Or – even better – a record (struct) or object.

Practice Assignment: Read in triplets (as records). Print out original matrix. Print our transpose.
Do not at any time store the entire 8 x 10 array in main memory.

PROF. FRIEDMAN 3

